Former member, Obvious Leo, often spoke of the relative unreality of space, that only gravity and time are fundamental, with space being emergent and only existent in a relative sense. I always found the idea both fascinating, but somehow incomplete, and since he moved to another forum I have continued to pester him whenever he raises the idea.
I recently found a link that comes to the same conclusion and provides a detailed explanation that I'm yet to fully plough through but seems logical and credible: http://nautil.us/issue/32/space/lets-rethink-space
This kind of self-organizing happens all the time in physics. For instance, a single water molecule has no temperature. Temperature becomes meaningful when molecules collide and exchange energy. If you mix cold and hot water, the cold warms up, the hot cools off, until they equalize. Before equilibrium, the water is characterized by two temperatures; afterward, by a single value. From complexity comes simplicity. The complexity remains latent, though. You can tell it’s there whenever the temperature fluctuates or water undergoes a transformation such as boiling in a teakettle. Physicists commonly use these deviations from standard behavior as windows into the microscopic composition of materials.And in the article's conclusion:
The same might go for space, too. The basic building blocks of nature might be capable of a tangle of relationships that would fill a celebrity gossip rag. Through some organizing mechanism or simply the play of averages, those relationships become regimented, so that they can be laid out on a spatial grid and interact only in strictly prescribed ways. A mind-bogglingly complex network of interactions reduces to a few numbers that we call “the position” and “the time.” The underlying complexity never goes away, though. In situations such as black holes, the system can become disordered and events can cease to have a position or a time. And even when the system is spatial, it contains a vast amount of latent complexity. The universe we see playing out in space may be just the surface level, where we float like little boats while leviathans stir in the deep.
Notably, these models presuppose time; they don’t incorporate Leibniz’s and Mach’s suggestion that time should emerge as surely as space does. Some researchers don’t see this as a failing, but as a profound truth about nature—that time must be fundamental even if space isn’t. After all, physics does need to have some foundational structure, something that everything else is built on, and time is as good a candidate as any. Indeed, how could you even talk about emergence as a temporal process if you don’t presume time?
“As soon as you say time is emergent, you run off the rails,” Martinec says. “What are the rules? What do I do?” The Caltech physicist Sean Carroll has put it succinctly: “Space is totally overrated, whereas time is underappreciated ... I think that time is going to last ... Space, on the other hand—totally bogus. Space is just an approximation that we find useful in certain circumstances.”